BEYFORTUS™ (nirsevimab-alip) injection, for intramuscular use

Initial U.S. Approval: 2023

INDICATIONS AND USAGE

BEYFORTUS is a respiratory syncytial virus (RSV) F protein-directed fusion inhibitor indicated for the prevention of RSV lower respiratory tract disease in:

- Neonates and infants born during or entering their first RSV season, (1)
- Children up to 24 months of age who remain vulnerable to severe RSV disease through their second RSV season. (1)

DOSE AND ADMINISTRATION

Administer as an intramuscular injection. (2.1)

Recommended dosage:

- Neonates and infants born during or entering their first RSV season:
 - 50 mg if less than 5 kg in body weight. (2.1)
 - 100 mg if greater than or equal to 5 kg in body weight. (2.1)

- Children who remain vulnerable through their second RSV season:
 - 200 mg (2 x 100 mg injections). (2.1)

DOSAGE FORMS AND STRENGTHS

Injection:

- 50 mg/0.5 mL in a single-dose pre-filled syringe. (3)
- 100 mg/mL in a single-dose pre-filled syringe. (3)

CONTRAINDICATIONS

BEYFORTUS is contraindicated in infants and children with a history of serious hypersensitivity reactions, including anaphylaxis, to nirsevimab-alip or to any of the excipients. (4)

WARNINGS AND PRECAUTIONS

- Hypersensitivity Reactions Including Anaphylaxis: Serious hypersensitivity reactions, including anaphylaxis, have been observed with human immunoglobulin G1 (IgG1) monoclonal antibodies. If signs and symptoms of anaphylaxis or other clinically significant hypersensitivity reactions occur, initiate appropriate treatment. (5.1)

ADVERSE REACTIONS

Most common adverse reactions were rash (0.9%) and injection site reactions (0.3%). (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Sanofi at 1-855-239-3678 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

USE IN SPECIFIC POPULATIONS

The safety and effectiveness of BEYFORTUS in children older than 24 months of age have not been established. (8.4)

See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling

Revised: 02/2024

Table 1 Recommended Dosage of BEYFORTUS in Neonates and Infants Born During or Entering Their First RSV Season

<table>
<thead>
<tr>
<th>Body Weight at Time of Dosing</th>
<th>Recommended Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 5 kg</td>
<td>50 mg by IM injection</td>
</tr>
<tr>
<td>5 kg and greater</td>
<td>100 mg by IM injection</td>
</tr>
</tbody>
</table>

Children Who Remain at Increased Risk for Severe RSV Disease: Second RSV Season

For children up to 24 months of age who remain at increased risk for severe RSV disease in their second RSV season, the recommended dosage of BEYFORTUS is a single 200 mg dose administered as two IM injections (2 x 100 mg).

Children Undergoing Cardiac Surgery with Cardiopulmonary Bypass

For children undergoing cardiac surgery with cardiopulmonary bypass, an additional dose of BEYFORTUS is recommended as soon as the child is stable after surgery to ensure adequate niveirimab-alip serum levels. The recommended dosage of BEYFORTUS is administered as an IM injection.

First RSV Season:

- If surgery is within 90 days after receiving BEYFORTUS, the additional dose should be based on body weight at the time of the additional dose. Refer to Table 1 for weight-based dosing.
- If more than 90 days have elapsed since receiving BEYFORTUS, the additional dose should be 50 mg regardless of body weight.
Second RSV season:

- If surgery is within 90 days after receiving BEYFORTUS, the additional dose should be 200 mg, regardless of body weight.
- If more than 90 days have elapsed since receiving BEYFORTUS, the additional dose should be 100 mg, regardless of body weight.

2.2 Administration Instructions

BEYFORTUS must be administered by a healthcare provider. Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit. BEYFORTUS is a clear to opalescent, colorless to yellow solution. Do not inject BEYFORTUS if the liquid is cloudy, discolored, or contains large particles or foreign particulate matter.

Do not use if the BEYFORTUS pre-filled syringe has been dropped or damaged, the security seal on the carton has been broken, or the expiration date has passed.

BEYFORTUS is available in a 50 mg and a 100 mg pre-filled syringe. Check the labels on the BEYFORTUS carton and pre-filled syringe to ensure the correct 50 mg or 100 mg product is being used.

Co-administration with Childhood Vaccines and Immunoglobin Products

BEYFORTUS can be given concomitantly with childhood vaccines [see Clinical Pharmacology (12.3)]. When administered concomitantly with injectable vaccines, they should be given with separate syringes and at different injection sites. Do not mix BEYFORTUS with any vaccines or medications in the same syringe or vial.

There is no information regarding co-administration of BEYFORTUS with other immunoglobulin products. Palivizumab should not be administered to infants who have already received BEYFORTUS in the same season. There are no data regarding substitution of BEYFORTUS for palivizumab once prophylaxis treatment is initiated with palivizumab for the RSV season. BEYFORTUS may be administered prior to or during the second RSV season to children up to 24 months of age who remain vulnerable to severe RSV disease, and who received palivizumab in their first RSV season [see Adverse Reactions (6.1) and Clinical Studies (14.3)].

Administration Instructions for Single-Dose Pre-filled Syringe

BEYFORTUS 50 mg (50 mg/0.5 mL) pre-filled syringe with a purple plunger rod.

BEYFORTUS 100 mg (100 mg/mL) pre-filled syringe with a light blue plunger rod.

Refer to Figure 1 for pre-filled syringe components.

Figure 1 Luer Lock Syringe Components

Step 1: Holding the Luer lock in one hand (avoid holding the plunger rod or syringe body), unscrew the syringe cap by twisting it counter-clockwise with the other hand.

Step 2: Attach a Luer lock needle to the pre-filled syringe by gently twisting the needle clockwise onto the pre-filled syringe until slight resistance is felt.

Step 3: Hold the syringe body with one hand and carefully pull the needle cover straight off with the other hand. Do not hold the plunger rod while removing the needle cover or the rubber stopper may move. Do not touch the needle or let it touch any surface. Do not recap the needle or detach it from the syringe.

Step 4: Administer the entire contents of the BEYFORTUS pre-filled syringe as an IM injection, preferably in the anterolateral aspect of the thigh. The gluteal muscle should not be used as an injection site because of the risk of damage to the sciatic nerve.

Step 5: Discard syringe into a sharps container.

If two injections are required, repeat Steps 1-5 in a different injection site.

3 DOSAGE FORMS AND STRENGTHS

BEYFORTUS is a clear to opalescent, colorless to yellow solution available as follows:

- Injection: 50 mg/0.5 mL in a single-dose pre-filled syringe.
- Injection: 100 mg/mL in a single-dose pre-filled syringe.

4 CONTRAINDICATIONS

BEYFORTUS is contraindicated in infants and children with a history of serious hypersensitivity reactions, including anaphylaxis, to nirsevimab-alp or to any of the excipients [see Warnings and Precautions (5.1) and Description (11)].

5 WARNINGS AND PRECAUTIONS

5.1 Hypersensitivity Reactions Including Anaphylaxis

Serious hypersensitivity reactions have been reported following BEYFORTUS administration. These reactions included urticaria, dyspnea, cyanosis, and/or hypotonia. Anaphylaxis has been observed with human immunoglobulin G1 (IgG1) monoclonal antibodies. If signs and symptoms of anaphylaxis or other clinically significant hypersensitivity reactions occur, initiate appropriate treatment.

5.2 Use in Individuals with Clinically Significant Bleeding Disorders

As with any other IM injections, BEYFORTUS should be given with caution to infants and children with thrombocytopenia, any coagulation disorder, or to individuals on anticoagulation therapy.

6 ADVERSE REACTIONS

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

A total of 3,224 pediatric subjects received the recommended dose of BEYFORTUS in Phase 2 and Phase 3 clinical trials (Trials 03, 04, and 05) including 2,119 infants who were born at 35 weeks gestational age (GA) or older, and 1,105 infants who were born at less than 35 weeks GA. A total of 247 infants with CHD (CLD of prematurity or hemodynamically significant congenital heart disease (CHD) in Trial 05 received the recommended dose of BEYFORTUS.

Neonates and Infants Entering Their First RSV Season (Trial 03 and Trial 04)

Trial 03 was a randomized, double-blind, placebo-controlled trial conducted in preterm infants born at a GA of greater than or equal to 29 weeks to less than 35 weeks. Subjects were randomized 2:1 to receive BEYFORTUS (N=968) or placebo (N=479) by IM injection. All subjects randomized to BEYFORTUS received a single 50 mg IM dose regardless of body weight. Safety data in Trial 03 are presented only for the infants in the BEYFORTUS arm who received the recommended dose (infants who weighed less than 5 kg and who received a single dose of 50 mg BEYFORTUS IM (N=572) or placebo (N=288).)

Trial 04 was a Phase 3, randomized, double-blind, placebo-controlled trial conducted in late preterm and term infants born at greater than or equal to 35 weeks. Trial 04 enrolled subjects sequentially into two cohorts: the Primary Cohort was used for the primary efficacy analysis (see Clinical Studies (14.3)) and for assessment of safety, and the Safety Cohort was used primarily for safety assessment. All subjects from both cohorts of Trial 04 were included in the safety analysis [BEYFORTUS N=1,998 and placebo N=996]. Subjects in Trial 04 weighing less than 5 kg received a single 50 mg IM dose of BEYFORTUS and infants weighing greater than or equal to 5 kg received a single 100 mg IM dose.

Infants who received the recommended dose in Trial 03 and infants in Trial 04 were pooled to evaluate the safety of BEYFORTUS (N=2,570) compared to placebo (N=1,284). At randomization, in this pooled Safety Population from Trials 03 and 04 cohorts, 22% of infants were born at less than 35 weeks GA, 10% of infants were GA greater than or equal to 35 weeks and less than 37 weeks; 68% were GA greater than or equal to 37 weeks; 52% were male; 57% were White; 15% were Black; 4% were American Indian/Alaskan native; 4% were Asian; 1% were Pacific Islander; and 19% were Other or Mixed Race; 30% were Hispanic or Latino; 73% were from Northern Hemisphere; and 53% weighed less than 5 kg. The median age was 2 months; 65% were less than or equal to 3 months; 25% were greater than or equal to 3 to less than or equal to 6 months, and 7% were greater than or equal to 6 months of age. (Refer to Sections 14.2 and 14.3, Clinical Studies, for a description of the efficacy populations in Trials 03 and 04). In both trials, infants received a single dose of IM BEYFORTUS or placebo on Study Day 1 and were monitored for at least 60 minutes post-dose. Subjects were followed for 360 days post-dose to assess safety. Adverse reactions were reported in 1.2% of subjects who received BEYFORTUS; most (97%) of adverse reactions were mild to moderate in intensity.

Table 2 summarizes the adverse reactions that occurred in Trial 03 and Trial 04 (Safety Population) in subjects who received the recommended dose of BEYFORTUS.

Table 2 Adverse Reactions Reported at an Incidence Higher Than Placebo in the Safety Population (Trials 03 and 04)

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>BEYFORTUS N=2,570 %</th>
<th>Placebo N=1,284 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash† (occurring within 14 days post-dose)</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Injection site reaction‡ (occurring within 7 days post-dose)</td>
<td>0.3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

*The Safety Population includes all subjects who received the recommended dose of BEYFORTUS in Trials 03 and 04: Primary and Safety cohorts from Trial 04: infants who weighed less than 5 kg and who received the recommended dose of BEYFORTUS (single 50 mg IM dose) in Trial 03.

†Rash was defined by the following grouped preferred terms: rash, rash macular, rash maculo-papular, rash papular.

‡Injection site reaction was defined by the following grouped preferred terms: injection site reaction, injection site pain, injection site induration, injection site edema, injection site swelling.

Infants Born at <35 Weeks Gestational Age and Infants and Children with CLD of Prematurity or Hemodynamically Significant CHD (Trial 05)

RSV Season One

The safety of BEYFORTUS was evaluated in Trial 05, a randomized, double-blind, placebo-controlled multicenter trial in infants at high risk for severe RSV disease. These subjects were randomized 2:1 to receive BEYFORTUS (N=614) or palivizumab (N=304) by IM injection. The 614 infants who received BEYFORTUS included 128 preterm infants born at less than 35 weeks GA, 10% of infants were GA greater than or equal to 35 weeks and less than 37 weeks; 68% were GA greater than or equal to 37 weeks; 52% were male; 57% were White; 15% were Black; 4% were American Indian/Alaskan native; 4% were Asian; 1% were Pacific Islander; and 19% were Other or Mixed Race; 30% were Hispanic or Latino; 73% were from Northern Hemisphere; and 53% weighed less than 5 kg. The median age was 2 months; 65% were less than or equal to 3 months; 25% were greater than or equal to 3 to less than or equal to 6 months, and 7% were greater than or equal to 6 months of age. (Refer to Warnings and Precautions (3.1) and Description (11)).
Nirsevimab-alip, a respiratory syncytial virus F protein-directed fusion inhibitor, is a human monoclonal antibody with anti-RSV activity produced in Chinese hamster ovary (CHO) cells by recombinant DNA technology. The molecular weight is approximately 155,000 daltons, which is long-acting due to a triple amino acid substitution (YTE) in the Fc region which increases half-life. Nirsevimab-alip is degraded into small peptides by catabolic pathways. Metabolism

Nirsevimab-alip is not a recombinant human IgG1κ monoclonal antibody produced in Chinese hamster ovary (CHO) cells by recombinant DNA technology. The molecular weight is approximately 155,000 daltons, which is long-acting due to a triple amino acid substitution (YTE) in the Fc region which increases half-life. Nirsevimab-alip is degraded into small peptides by catabolic pathways. Metabolism

Mechanism of Action
Nirsevimab-alip is a recombinant human IgG1κ monoclonal antibody produced in Chinese hamster ovary (CHO) cells by recombinant DNA technology. The molecular weight is approximately 155,000 daltons, which is long-acting due to a triple amino acid substitution (YTE) in the Fc region which increases half-life. Nirsevimab-alip is degraded into small peptides by catabolic pathways. Metabolism

Mechanism of Action
Nirsevimab-alip is a recombinant human IgG1κ monoclonal antibody produced in Chinese hamster ovary (CHO) cells by recombinant DNA technology. The molecular weight is approximately 155,000 daltons, which is long-acting due to a triple amino acid substitution (YTE) in the Fc region which increases half-life. Nirsevimab-alip is degraded into small peptides by catabolic pathways. Metabolism

In Clinical Trials
In surveillance trials, polymorphisms conferring large fold-reductions in susceptibility to nirsevimab-alip in isolates collected from 1956-2014 were not observed for RSV A and seen rarely (<1%) for RSV B, and included K65Q+K68N (1,239-fold change), K65Q+S211N (36-fold change), and L203I (3,005-fold change) substitutions. In prospective, observational, global molecular epidemiology studies (OUTSMART-RSV and INFORM-RSV) genetic diversity of RSV F protein sequences has remained low (most amino acids in both RSV A and B >99% conserved). Variants harboring known nirsevimab-alip resistance-associated substitutions were not observed in surveillance data collected from 2015-2021, and in clinical trials no resistance-associated substitutions identified among neutralization escape variants were located in the nirsevimab-alip binding site (amino acids 62-69 and 196-212) and were shown to reduce binding affinity to RSV F protein.

In surveillance trials, polymorphisms conferring large fold-reductions in susceptibility to nirsevimab-alip in isolates collected from 1956-2014 were not observed for RSV A and seen rarely (<1%) for RSV B, and included K65Q+K68N (1,239-fold change), K65Q+S211N (36-fold change), and L203I (3,005-fold change) substitutions. In prospective, observational, global molecular epidemiology studies (OUTSMART-RSV and INFORM-RSV) genetic diversity of RSV F protein sequences has remained low (most amino acids in both RSV A and B >99% conserved). Variants harboring known nirsevimab-alip resistance-associated substitutions were not observed in surveillance data collected from 2015-2021, and in clinical trials no resistance-associated substitutions identified among neutralization escape variants were located in the nirsevimab-alip binding site (amino acids 62-69 and 196-212) and were shown to reduce binding affinity to RSV F protein.

In surveillance trials, polymorphisms conferring large fold-reductions in susceptibility to nirsevimab-alip in isolates collected from 1956-2014 were not observed for RSV A and seen rarely (<1%) for RSV B, and included K65Q+K68N (1,239-fold change), K65Q+S211N (36-fold change), and L203I (3,005-fold change) substitutions. In prospective, observational, global molecular epidemiology studies (OUTSMART-RSV and INFORM-RSV) genetic diversity of RSV F protein sequences has remained low (most amino acids in both RSV A and B >99% conserved). Variants harboring known nirsevimab-alip resistance-associated substitutions were not observed in surveillance data collected from 2015-2021, and in clinical trials no resistance-associated substitutions identified among neutralization escape variants were located in the nirsevimab-alip binding site (amino acids 62-69 and 196-212) and were shown to reduce binding affinity to RSV F protein.

In surveillance trials, polymorphisms conferring large fold-reductions in susceptibility to nirsevimab-alip in isolates collected from 1956-2014 were not observed for RSV A and seen rarely (<1%) for RSV B, and included K65Q+K68N (1,239-fold change), K65Q+S211N (36-fold change), and L203I (3,005-fold change) substitutions. In prospective, observational, global molecular epidemiology studies (OUTSMART-RSV and INFORM-RSV) genetic diversity of RSV F protein sequences has remained low (most amino acids in both RSV A and B >99% conserved). Variants harboring known nirsevimab-alip resistance-associated substitutions were not observed in surveillance data collected from 2015-2021, and in clinical trials no resistance-associated substitutions identified among neutralization escape variants were located in the nirsevimab-alip binding site (amino acids 62-69 and 196-212) and were shown to reduce binding affinity to RSV F protein.
In Trial 04, an RSV B variant harboring binding site substitution L204S (no phenotypic trials summarized in Table 3. The efficacy and safety of BEYFORTUS were evaluated in term and preterm infants in the 14 CLINICAL STUDIES with BEYFORTUS. Carcinogenesis, mutagenesis and reproductive toxicity studies have not been performed with BEYFORTUS. 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility 13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility Carcinogenesis, mutagenesis and reproductive toxicity studies have not been performed with BEYFORTUS.

14 CLINICAL STUDIES 14.1 Description of Clinical Trials The efficacy and safety of BEYFORTUS were evaluated in term and preterm infants in the trials summarized in Table 3.

| Table 3 Trials Conducted with BEYFORTUS for the Prevention of MA RSV LRTI |
|---|---|---|
| **Trial** | **Population** | **Study Arms** |
| D592000003 (Trial 03) NCT02879330 | Infants born ≥29 to <35 weeks GA entering their first RSV season | BEYFORTUS (N=969) Placebo (N=844) |
| D592000004 (Trial 03) NCT03979313 | Infants born ≥35 weeks GA entering their first RSV season | Primary Cohort1: BEYFORTUS (N=994) Placebo (N=946) Safety Cohort2: BEYFORTUS (N=1,015) Placebo (N=1,039) |
| D592000005 (Trial 03) NCT03959488 | Infants born ≥35 weeks GA entering their first RSV season with CLD or CHD only entering their second RSV season | RSV Season One: BEYFORTUS (N=165) Palivizumab (N=304) RSV Season Two: BEYFORTUS (N=220) Palivizumab (N=42) |

GA gestational age; CLD chronic lung disease; CHD hemodynamically significant chronic heart disease

*All subjects in Trial 03 were included in the efficacy analysis. All subjects in Trial 03 received 50 mg of BEYFORTUS IM injections regardless of body weight. The recommended RSV dose in neonates and infants born during or entering their first RSV season is single IM 50 mg and 100 mg dose for those who weigh ≥5 kg and ≥5 kg, respectively [see Dosage and Administration 2.1].

†The primary efficacy analysis for Trial 04 is based on subjects from the Primary Cohort. For Trial 04 safety analysis [see Adverse Reactions 6.1].

‡Trial 04 safety analysis included both Primary and Safety Cohorts [see Adverse Reactions 6.1].

14.2 Prevention of MA RSV LRTI in Infants Born at ≥29 to <35 Weeks Gestational Age (Trial 03)

Trial 03 was a randomized, double-blind, placebo-controlled multicenter trial for the prevention of Medically Attended Respiratory Syncytial Virus Lower Respiratory Tract Infection (MA RSV LRTI) conducted in preterm infants born at gestational age (GA) greater than or equal to 29 weeks and less than 35 weeks. These subjects were randomized 2:1 to receive BEYFORTUS (N=969) or placebo (N=484) by IM injection. All subjects in the BEYFORTUS arm received 50 mg IM of BEYFORTUS regardless of body weight. The recommended BEYFORTUS dose in neonates and infants born during or entering their first RSV season is a single IM 50 mg or 100 mg dose for those who weigh less than 5 kg and greater than or equal to 5 kg, respectively [see Dosage and Administration 2.1]. At randomization, 20% were GA greater than or equal to 29 weeks and less than 32 weeks; 80% were GA greater than or equal to 32 and less than 35 weeks; 52% were male; 72% were White; 18% were Black; 1% were Asian; 1% were Pacific Islander, and 6% were Other. The median GA was 32 weeks (range: 28 to 38 weeks). The median age was 2.8 months (range: 0.1 to 11.9 months); 53% were less than or equal to 3 months; 33% were greater than 3 less than or equal to 6 months, and 14% were greater than 6 months of age.

The primary endpoint was the incidence of MA RSV LRTI caused by RT-PCR-confirmed RSV, characterized predominantly as bronchiolitis or pneumonia through 150 days after dosing. Medically Attended (MA) includes all healthcare provider visits such as physician office, urgent care, emergency room visits and hospitalizations. Signs of LRTI involvement included rhonchi, rales, crackles, or wheezes, and at least one of the following severity including at least one of the following: increased respiratory rate, hypoxemia, acute hypoxic or ventilatory failure, new onset apnea, nasal flaring, retractions, grunting, or dehydration due to respiratory distress. Incidence of RSV LRTI with hospitalization was recorded as a prespecified secondary endpoint. RSV hospitalization was defined as hospitalization for LRTI with a positive RSV test.

Table 4 displays the primary efficacy result for Trial 03.

| Table 4 Incidence of MA RSV LRTI in Infants Born at ≥29 Weeks to <35 Weeks Through 150 Days Post Dose (Trial 03) |
|---|---|---|
| N | Incidence % (n) | Efficacy (95% CI) |
| BEYFORTUS | 969 | 2.6% (25) | 70.1% (52.3, 81.2) |
| Placebo | 484 | 9.5% (46) | |

*Efficacy for MA RSV LRTI based on relative risk reduction against placebo adjusted for age at randomization and hemisphere.

†p-value = 0.001.

In a post-hoc analysis of all randomized infants in Trial 03 weighing ≥5 kg at baseline, and who received the recommended dose of BEYFORTUS, efficacy for MA RSV LRTI, based on relative risk reduction against placebo was 86.2% (95% CI 68.0, 94.0); efficacy for RSV LRTI with hospitalization based on relative risk reduction against placebo was 86.5% (95% CI 53.5, 96.1).

In Trial 03, the efficacy of BEYFORTUS against MA RSV LRTI with hospitalization in infants born at GA greater than or equal to 29 weeks and less than 35 weeks, who received a single dose of 50 mg BEYFORTUS, based on the relative risk reduction was 78.4% (95% CI 51.9, 90.3; p=0.0002), through 150 days post dose.

14.3 Prevention of MA RSV LRTI in Infants Born at ≥29 to 35 Weeks Gestational Age (Trial 04)

BEYFORTUS was evaluated in one Phase 3 randomized, double-blind, placebo-controlled multicenter trial, Trial 04, for the prevention of MA RSV LRTI in term and late preterm infants GA greater than or equal to 35 weeks entering their first RSV season. The primary analysis population (Primary Cohort) included 1,490 term and late preterm infants (GA greater than or equal to 35 weeks). Subjects were randomized 2:1 to receive a single IM dose of BEYFORTUS (N=994) (50 mg if less than 5 kg body weight or 100 mg if greater than or equal to 5 kg body weight at the time of dosing), or placebo (N=496). At randomization, 14% were GA greater than or equal to 35 weeks and less than 37 weeks; 86% were GA greater than or equal to 37 weeks; 52% were male; 33% were White; 28% were Black; 6% were American Indian/Alaskan native; 4% were Asian; 1% were Pacific Islander, and 6% were Other or Mixed Race; 10% were Hispanic or Latino; 69% were from Northern Hemisphere, and 31% weighed less than 5 kg. The median age was 2.6 months (range: 0.03 to 11.10 months); 58% were less than or equal to 3 months; 32% were greater than 3 less than or equal to 6 months, 10% were greater than 6 months of age.

In Trial 04, the primary endpoint was the incidence of MA RSV LRTI caused by RT-PCR-confirmed RSV, as defined in Trial 03. Incidence of RSV LRTI with hospitalization was a prespecified secondary endpoint. RSV hospitalization was defined as hospitalization for LRTI with a positive RSV test.

Table 5 displays the primary efficacy result from Trial 04.

| Table 5 Incidence of MA RSV LRTI in Infants Born at ≥35 Weeks Through 150 Days Post Dose (Trial 04) |
|---|---|---|
| N | Incidence % (n) | Efficacy (95% CI) |
| BEYFORTUS | 994 | 1.2% (12) | 74.9% (50.6, 87.3) |
| Placebo | 496 | 5.0% (25) | |

*The primary efficacy analysis for Trial 04 is based on subjects from the Primary Cohort. Efficacy for MA RSV LRTI based on relative risk reduction against placebo adjusted for age at randomization.

†p-value = 0.001.

In Trial 04, the efficacy of BEYFORTUS against MA RSV LRTI with hospitalization in infants born at GA greater than or equal to 35 weeks, who received a single IM 50 mg or 100 mg dose for those who weigh less than 5 kg and greater than or equal to 5 kg, respectively, based on the relative risk reduction was 60.2% (95% CI 14.6, 82.6; p=0.009), through 150 days post dose.

14.4 Prevention of MA RSV LRTI in Infants Born at ≥35 Weeks Gestational Age and Infants with CLD of Prematurity or Hemodynamically Significant CHD (Trial 05)

The safety and PK of BEYFORTUS were evaluated in a Phase 2/3 randomized, double-blind, palivizumab-controlled multicenter trial (Trial 05) in pediatric subjects born less than 35 weeks GA and infants with CLD of prematurity or hemodynamically significant CHD. This trial was not powered for efficacy, but efficacy was assessed as secondary endpoint. The efficacy of BEYFORTUS in preterm infants (GA less than 35 weeks) during
their first RSV season and in pediatric subjects up to 24 months of age with CLD or CHD.

In the second RSV season, 358 infants and children were randomized to either receive BEYFORTUS or palivizumab. Infants received a single IM dose of BEYFORTUS (50 mg if less than 5 kg body weight or 100 mg if greater than or equal to 5 kg body weight at the time of dosing), followed by 4 once-monthly IM doses of placebo, or 5 once-monthly IM doses of 15 mg/kg palivizumab, respectively. At randomization, in the preterm cohort, 77 infants (13%) were less than 29 weeks GA; and 499 (81%) were GA greater than or equal to 29 to less than 35 weeks. In the CLD/CHD cohort, 70% had CLD of prematurity; 34% had hemodynamically significant CHD; 123 infants (40%) were less than 29 weeks GA; 26% were greater than or equal to 29 weeks to less than 35 weeks GA; and 32% were greater than or equal to 35 weeks GA. In both cohorts together, 54% were male; 79% were White; 10% were Black; 5% were Asian; 2% were American Indian/Alaskan Native; 15% were Hispanic or Latino; and 57% weighed less than 5 kg. The median age was 3.5 months (range: 0.07 to 12.3 months); 45% were less than or equal to 3 months; 34% were greater than 3 months to less than or equal to 6 months; and 21% were greater than 6 months of age.

In the first RSV season of Trial 05, the incidence of MA RSV LRTI through Day 150 post-dose was 0.6% (4/616) in the BEYFORTUS group and 1.0% (3/309) in the palivizumab group. In the second RSV season, there were no cases of MA RSV LRTI through Day 150 post-dose in subjects who received either BEYFORTUS or palivizumab.

Clinical Pharmacology

BEYFORTUS is a trademark of the Sanofi group of companies.

Manufactured by: AstraZeneca AB, Södertälje, Sweden SE-15185

US License No. 2059

Distributed by: Sanofi Pasteur, Inc., Swiftwater, PA 18370 USA

BEYFORTUS is a trademark of the Sanofi group of companies.

©AstraZeneca 2024

PATIENT INFORMATION
BEYFORTUS™ (Bay for tus) (nirsevimab-alip) injection, for intramuscular use

What is BEYFORTUS?
BEYFORTUS is a prescription medicine that is used to help prevent a serious lung disease caused by Respiratory Syncytial Virus (RSV) in:

- newborns and babies under 1 year of age born during or entering their first RSV season
- children up to 24 months of age who remain at risk of severe RSV disease through their second RSV season

BEYFORTUS is an antibody that contains nirsevimab-alip which is used to help prevent RSV disease for 5 months. It is not known if BEYFORTUS is safe and effective in children older than 24 months of age.

Your child should not receive BEYFORTUS if your child has a history of serious allergic reactions to nirsevimab-alip or any of the ingredients in BEYFORTUS. See the end of this Patient Information leaflet for a complete list of ingredients in BEYFORTUS.

Before your child receives BEYFORTUS, tell your healthcare provider about all of your child’s medical conditions, including if your child:

- has ever had a reaction to BEYFORTUS.
- has bleeding or bruising problems. If your child has a problem with bleeding or bruises easily, an injection could cause a problem.

Tell your child’s healthcare provider about all the medicines your child takes, including prescription and over-the-counter medicines, vitamins, and herbal supplements. Your infant should not receive a medicine called palivizumab if they have already received BEYFORTUS in the same RSV season.

How is BEYFORTUS given?

- BEYFORTUS is given as an injection, usually in the thigh (leg) muscle, by your child’s healthcare provider.
- Your child should receive BEYFORTUS before or during the RSV season. RSV season is the time of year when RSV infections are most common, usually occurring fall through spring. Your healthcare provider can tell you when the RSV season starts in your area.
- Your child may still get RSV disease after receiving BEYFORTUS. Talk to your child’s healthcare provider about what symptoms to look for.
- If your child has heart surgery, your child’s healthcare provider may need to give your child an additional BEYFORTUS injection soon after surgery.

What are the possible side effects of BEYFORTUS?

- Serious allergic reactions have happened with BEYFORTUS.
- Get medical help right away if your child has any of the following signs or symptoms of a serious allergic reaction:
 - swelling of the face, mouth, or tongue
 - difficulty swallowing or breathing
 - unresponsiveness

The most common side effects of BEYFORTUS include rash, and pain, swelling or hardness at the site of your child’s injection. These are not all of the possible side effects of BEYFORTUS. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.
General information about the safe and effective use of BEYFORTUS.
Medicines are sometimes prescribed for purposes other than those listed in a Patient Information leaflet. You can ask your pharmacist or healthcare provider for information about BEYFORTUS that is written for health professionals.

What are the ingredients in BEYFORTUS?
Active ingredient: nirsevimab-alip
Inactive ingredients: arginine hydrochloride, histidine, L-histidine hydrochloride monohydrate, polysorbate 80, sucrose and water for injection.

Manufactured by: AstraZeneca AB, Södertälje, Sweden SE-15185
US License No. 2059
Distributed by: Sanofi Pasteur, Inc., Swiftwater, PA 18370 USA
BEYFORTUS is a trademark of the Sanofi group of companies.
©AstraZeneca 2024
For more information, go to https://www.Beyfortus.com or call 1-855-239-3678 (1-855-BEYFORTUS).

This Patient Information has been approved by the U.S. Food and Drug Administration.
Issued: February 2024