RIFATER® (rifampin, isoniazid and pyrazinamide USP) Tablets

WARNING

Severe and sometimes fatal hepatitis associated with isoniazid therapy may occur and may develop even after many months of treatment. The risk of developing hepatitis is age related. Approximate case rates by age are: 0 per 1,000 for persons under 20 years of age, 3 per 1,000 for persons in the 20 to 34 year age group, 12 per 1,000 for persons in the 35 to 49 year age group, 23 per 1,000 for persons in the 50 to 64 year age group, and 8 per 1,000 for persons over 65 years of age. The risk of hepatitis is increased with daily consumption of alcohol. Precise data to provide a fatality rate for isoniazid-related hepatitis is not available; however, in a U.S. Public Health Service Surveillance Study of 13,838 persons taking isoniazid, there were 8 deaths among 174 cases of hepatitis.

Therefore, patients given isoniazid should be carefully monitored and interviewed at monthly intervals. Serum transaminase concentration becomes elevated in about 10% to 20% of patients, usually during the first few months of therapy, but it can occur at any time. Usually enzyme levels return to normal despite continuation of drug, but in some cases progressive liver dysfunction occurs. Patients should be instructed to report immediately any of the prodromal symptoms of hepatitis, such as fatigue, weakness, malaise, anorexia, nausea, or vomiting. If these symptoms appear or if signs suggestive of hepatic damage are detected, isoniazid should be discontinued promptly since continued use of the drug in these cases has been reported to cause a more severe form of liver damage.

Patients with tuberculosis should be given appropriate treatment with alternative drugs. If isoniazid must be reinstituted, it should be reinstituted only after symptoms and laboratory abnormalities have cleared. The drug should be restarted in very small and gradually increasing doses and should be withdrawn immediately if there is any indication of recurrent liver involvement. Treatment should be deferred in persons with acute hepatic diseases.

DESCRIPTION

RIFATER (rifampin/isoniazid/pyrazinamide USP) tablets are combination tablets containing 120 mg rifampin, 50 mg isoniazid, and 300 mg pyrazinamide for use in antibacterial therapy. The tablets also contain as inactive ingredients: povidone, carboxymethyl cellulose sodium, cellulose sodium lauryl sulfate, sucrose, talc, acacia, titanium dioxide, kaolin, magnesium carbonate, colloidal silicon dioxide, dried aluminum hydroxide gel, ferric oxide, black iron oxide, camu camu wax, white beeswax, collophory, hard paraffin, lecithin, shellac, and propylene glycol. The RIFATER triple therapy combination was developed for dosing convenience.

Rifampin

Rifampin is a semisynthetic antibiotic derivative of rifamycin SV. Rifampin is a red-brown crystalline powder very slightly soluble in water at neutral pH, freely soluble in chloroform, soluble in ethyl acetate and methanol. Its molecular weight is 822.95 and its chemical formula is C\textsubscript{39}H\textsubscript{48}N\textsubscript{4}O\textsubscript{15}. The chemical name for rifampin is either: 3-[[4-methyl-1-piperazinyl]iminomethyl]-rifamycin or 5,6,9,17,19,21-hexahydroxy-23-methoxy-2,4,12,16,18,20,22,23- heptamethylen-8-[N-(4-methyl-1-piperazinyl)formimidoyl]-2,7-(epoxypentadeca [1,11,13]lirinimino)napth[2,1-d][urac-1,11(2)H]-dione 21-acetate.

Its structural formula is:

![Rifampin Structural Formula](image)

Isoniazid

Isoniazid is the hydrazide of isonicotinic acid. It is a colorless or white crystalline powder or white crystals. It is odorless and slowly affected by exposure to air and light. It is freely soluble in water, sparingly soluble in alcohol and slightly soluble in chloroform and in ether. Its molecular weight is 137.14 and its chemical formula is C\textsubscript{3}
\textsubscript{H}\textsubscript{6}
\textsubscript{N}
\textsubscript{2}
O. The chemical name for isoniazid is 4-phenylhydrazinecarboxylic acid, hydrazide and its structural formula is:

![Isoniazid Structural Formula](image)

Pyrazinamide

Pyrazinamide, the pyrazine analogue of isonicotinic acid, is a white, crystalline powder, stable at room temperature, and sparingly soluble in water. The chemical name for pyrazinamide is pyrazinacarbamido and its molecular weight is 123.11. Its chemical formula is C\textsubscript{5}H\textsubscript{7}N\textsubscript{3}O and its structural formula is:

![Pyrazinamide Structural Formula](image)

CLINICAL PHARMACOLOGY

In a single-dose bioavailability study of five RIFATER tablets (Treatment A, n=23) versus RIFADIN 600 mg, isoniazid 250 mg, and pyrazinamide 1500 mg (Treatment B, n=34) administered concurrently in healthy subjects, there was no difference in extent of absorption, as measured by the area under the plasma concentration versus time curve (AUC), of all three components. However, the mean peak concentration of rifampin was approximately 18% lower following the single-dose administration of the unbuffered tablets as compared to RIFADIN administered in combination with pyrazinamide and isoniazid. Mean (±SD) pharmacokinetic parameters are summarized in the following table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C\textsubscript{max} (mcg/mL)</th>
<th>Half-life (hr)</th>
<th>Apparent Oral Clearance (L/hr)</th>
<th>Bioavailability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>3.09±0.88</td>
<td>3.14±0.92</td>
<td>2.80±1.02</td>
<td>2.80±1.11</td>
</tr>
<tr>
<td>Rifampin</td>
<td>11.04±3.08</td>
<td>13.61±3.96</td>
<td>3.19±0.63</td>
<td>3.41±0.86</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>28.02±4.52</td>
<td>29.21±4.35</td>
<td>10.04±1.54</td>
<td>10.08±1.29</td>
</tr>
</tbody>
</table>

The effect of food on the pharmacokinetics of RIFATER tablets was not studied.

Rifampin

Rifampin is readily absorbed from the gastrointestinal tract. Peak serum levels in healthy adults and pediatric populations vary widely from individual to individual. Following a single 600 mg oral dose of rifampin in healthy adults, the peak serum level averages 7 mcg/mL but may vary from 4 to 32 mcg/mL. Absorption of rifampin is reduced by about 30% when the drug is ingested with food.

In healthy adults, the biological half-life of rifampin in serum averages 3.5±0.66 hours after a 600 mg oral dose, with increases up to 5.08±4.45 hours reported after a 900 mg dose. With repeated administration, the half-life decreases and reaches average values of approximately 2 to 3 hours. The half-life does not differ in patients with renal failure at doses not exceeding 600 mg daily, and, consequently, no dosage adjustment is required. The half-life of rifampin at a dose of 720 mg daily has not been established in patients with renal failure. Following a single 900 mg oral dose of rifampin in patients with varying degrees of renal insufficiency, the mean half-life increased from 3.6 hours in healthy adults to 5.0, 7.3, and 11.0 hours in patients with glomerular filtration rates of 30–50 mL/min, less than 30 mL/min, and in anuric patients, respectively. Refer to the WARNINGS section for information regarding patients with hepatic insufficiency.

After absorption, rifampin is rapidly eliminated in the bile, and an enterohepatic circulation ensues. During this process, rifampin undergoes progressive deacetylation so that nearly all the drug in the bile is in this form in about 6 hours. This metabolite has antibacterial activity. Intestinal reabsorption is reduced by deacetylation, and elimination is facilitated. Up to 30% of a dose is excreted in the urine, with about half as unchanged drug.

Rifampin is widely distributed throughout the body. It is present in effective concentrations in many organs and body fluids, including cerebrospinal fluid. Rifampin is about 80% protein bound. Most of the unbound fraction is not ionized and therefore is diffused freely in tissues.

Pediatrics

In one study, pediatric patients 6 to 58 months old were given rifampin suspended in simple syrup or as dry powder mixed with applesauce at a dose of 10 mg/kg body weight. Peak serum concentrations of 10–37.3 mg/L were obtained within 1 hour after preparadinal ingestion of the drug suspension and the applesauce mixture, respectively. After the administration of either preparation, the t\textsubscript{1/2} of rifampin averaged 2.9 hours. It should be noted that in other studies in pediatric populations, at doses of 10 mg/kg body weight, mean peak serum concentrations of 3.5 mcg/mL to 15 mcg/mL have been reported.

Isoniazid

Isoniazid is readily absorbed from the GI tract and produces peak blood levels within 1 to 2 hours which decline to 50% or less within 6 hours. It diffuses readily into all body fluids (cerebrospinal, pleural, and ascitic fluids), tissues, organs, and excreta (saliva, sputum, and feces). Isoniazid is not substantially bound to plasma proteins. The drug also passes through the placental barrier and into milk in concentrations comparable to those in the plasma. The plasma half-life of isoniazid in patients with normal renal and hepatic function ranges from 1 to 4 hours, depending on the rate of metabolism. From 50% to 70% of a dose of isoniazid is excreted in the urine within 24 hours, mostly as metabolites.

Isoniazid is metabolized in the liver mainly by acetylation and dehydroxylation. The rate of acetylation is genetically determined. Approximately 50% of African Americans and Caucasians are "slow inactivators" and the rest are "rapid inactivators"; the majority of Eskimos and Asians are "rapid inactivators." The rate of acetylation does not significantly alter the effectiveness of isoniazid. However, slow acetylation may lead to higher blood levels of the drug, and, thus, an increase in toxic reactions. Pyridoxine (B\textsubscript{6}) deficiency is sometimes observed in adults with high doses of isoniazid and is probably due to its competition with pyridoxal phosphate for the enzyme apyrophosphatase.

Pyrazinamide

Pyrazinamide is well absorbed from the gastrointestinal tract and attains peak plasma concentrations within 2 hours. Plasma concentrations generally range from 30 to 50 mcg/mL, with doses of 20 to 25 mcg/kg.
Isoniazid, rifampin, and pyrazinamide dosed as separate tablets and capsules.

The median follow-up time for all the RIFATER patients was 756 days with a range of 42 to 1325 days.

Organisms resistant to rifampin are likely to be resistant to other rifamycins.

Mechanism of Action
Rifampin inhibits DNA-dependent RNA polymerase activity in susceptible Mycobacterium tuberculosis organisms. Specifically, it interacts with bacterial RNA polymerase, but does not inhibit the mammalian enzyme.

Isoniazid inhibits the biosynthesis of mycolic acids which are major components of the cell wall of Mycobacterium tuberculosis.

Pyrazinamide
The exact mechanism of action by which pyrazinamide inhibits the growth of Mycobacterium tuberculosis organisms is unknown.

Resistance
Organisms resistant to rifampin are likely to be resistant to other rifamycins. \(\beta\)-lactamase production should have no effect on rifampin activity.

In the treatment of tuberculosis, the small number of resistant cells present within large populations of susceptible cells can rapidly become predominant. In addition, resistance to rifampin has been determined to occur as single-step mutations of the DNA-dependent RNA polymerase. Since resistance can emerge rapidly, appropriate susceptibility tests should be performed in the event of persistent positive cultures.

Activity in vitro and in vivo
Rifampin, isoniazid, and pyrazinamide at therapeutic levels have demonstrated bactericidal activity against both intracellular and extracellular Mycobacterium tuberculosis organisms (see INDICATIONS AND USAGE).

Pyrazinamide alone is only active at a slightly acidic pH (pH 5.5) in vitro and in vivo. Isoniazid kills actively growing tubercle bacilli.

Susceptibility Testing
For specific information regarding susceptibility test criteria and associated test methods and quality control standards recognized by FDA for this drug, please see: www.fda.gov/STIC.

CLINICAL TRIALS
A total of 250 patients were enrolled in an open label, prospective, randomized, parallel group, active controlled trial for the treatment of pulmonary tuberculosis. There were 241 patients available for efficacy, 123 patients received isoniazid, rifampin, and pyrazinamide as separate tablets and capsules for 56 days, and 118 patients received 4 to 6 RIFATER tablets based on body weight for 56 days. RIFATER tablets and the drugs dosed as separate tablets and capsules were administered based on body weight during the intensive phase of treatment according to the following table.

Dose of Isoniazid, Rifampin, and Pyrazinamide Administered as Separate Drugs

<table>
<thead>
<tr>
<th>Patient Weight</th>
<th>Isoniazid (mg)</th>
<th>Rifampin (mg)</th>
<th>Pyrazinamide (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td><50 kg</td>
<td>300</td>
<td>450</td>
<td>1500</td>
</tr>
<tr>
<td>≥50 kg</td>
<td>600</td>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

Dose of Isoniazid, Rifampin, and Pyrazinamide Administered as RIFATER

<table>
<thead>
<tr>
<th>Patient Weight</th>
<th>Number of Tablets</th>
<th>Isoniazid (mg)</th>
<th>Rifampin (mg)</th>
<th>Pyrazinamide (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤44 kg</td>
<td>6</td>
<td>200</td>
<td>480</td>
<td>1200</td>
</tr>
<tr>
<td>45 to 54 kg</td>
<td>5</td>
<td>250</td>
<td>600</td>
<td>1500</td>
</tr>
<tr>
<td>≥55 kg</td>
<td>6</td>
<td>300</td>
<td>720</td>
<td>1800</td>
</tr>
</tbody>
</table>

CLINICAL TRIALS
During the continuation phase, both treatment groups received 450 mg of rifampin and 300 mg of isoniazid per day for 4 months if the patient weighed <50 kg or 600 mg of rifampin and 300 mg of isoniazid per day for 4 months if the patient weighed ≥50 kg. Patients were followed for occurrence of relapses for up to 30 months after the end of therapy.

There were no significant differences in the negative bacteriological sputum results (available in a subset of patients) between the two treatments at 2 and 6 months during the trial and during the follow-up period. See table below.

Negative Sputa/No. of Patients (Percent Negative)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2 Months</th>
<th>6 Months</th>
<th>Follow-up Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIFATER</td>
<td>91/96 (95%)</td>
<td>100/104 (96%)</td>
<td>99/101 (98%)</td>
</tr>
<tr>
<td>Separate*</td>
<td>99/108 (92%)</td>
<td>95/96 (99%)</td>
<td>105/106 (99%)</td>
</tr>
</tbody>
</table>

*The median follow-up time for all the RIFATER patients was 756 days with a range of 42 to 1323 days and 745 days with a range of 50 to 1427 days for the patients dosed with separate tablets and capsules.

For adverse events, see ADVERSE REACTIONS.

INDICATIONS AND USAGE
RIFATER is indicated in the initial phase of the short-course treatment of pulmonary tuberculosis.
Rifampin has enzyme induction properties that can enhance the metabolism of endogenous substrates including arachidonic acid, hormonally active substances, and vitamin D3. Rifampin may cause monitoring of K-dependent coagulopathy and severe bleeding (see ADVERSE REACTIONS). Monitoring of occurrence of coagulopathy is recommended for patients at particular bleeding risk. Supplemental vitamin K administration should be considered when appropriate (vitamin K deficiency, hypoprothrombinemia).

Isoniazid

All drugs should be stopped and an evaluation of the patient should be made at the first sign of a hypersensitivity reaction. Use of RIFATER, because it contains isoniazid, should be carefully monitored in the following:

1. Patients who are receiving phenytoin (diphenyldihydropyridine) concurrently. Isoniazid may decrease the excretion of phenytoin or may enhance its effects. To avoid phenytoin intoxication, appropriate adjustment of the anticonvulsant dose should be made.

2. Daily users of alcohol. Daily ingestion of alcohol may be associated with a higher incidence of isoniazid hepatitis.

3. Patients with current chronic liver disease or severe renal dysfunction.

Pyrazinamide

Pyrazinamide inhibits renal excretion of urates, frequently resulting in hyperuricemia which is usually asymptomatic. If hyperuricemia is accompanied by acute gouty arthritis, RIFATER, because it contains pyrazinamide, should be discontinued.

Information for Patients

Food Interactions

Because isoniazid has some monoamine oxidase inhibiting activity, an interaction with tyramine-containing foods (cheese, red wine) may occur. Diamine oxidation may also be inhibited, causing exaggerated response (e.g., headache, sweating, palpitations, flushing, hypotension) to foods containing histamine (e.g., skipjack, tuna, other tropical fish). Tyramine and histamine-containing foods should be avoided in patients receiving RIFATER.

RIFATER, because it contains rifampin, may produce a discoloration (yellow, orange, red, brown) of the teeth, urine, sweat, sputum, and tears, and the patient should be forewarned of this. Soft contact lenses may be permanently stained.

The patient should be advised that the reliability of oral or other systemic hormonal contraceptives may be affected; consideration should be given to using alternative contraceptive measures.

Patients should be instructed to take RIFATER either 1 hour before or 2 hours after a meal with a full glass of water. Patients should be instructed to notify their physician immediately if they experience any of the following: rash with fever or blisters, with or without peeling skin, fever or swollen lymph nodes, loss of appetite, malaise, nausea and vomiting, darkened urine, yellow discoloration of the skin and eyes, cough, shortness of breath, wheezing, pain or swelling of the joints.

Compliance with the full course of therapy must be emphasized, and the importance of not missing any doses must be stressed.

Laboratory Test

Adults treated for tuberculosis with RIFATER should have baseline measurements of hepatic enzymes, bilirubin, serum creatinine, a complete blood count (CBC) and platelet count (or estimate), and a uric acid test. Patients should be seen at least monthly during therapy and should be specifically questioned concerning symptoms associated with adverse reactions. All patients with abnormalities should have follow-up, including laboratory testing, if necessary. Routine laboratory monitoring for toxicity in people with normal baseline measurements is generally not necessary.

Drug Interactions

Rifampin

Healthy subjects who received rifampin 600 mg once daily concomitantly with saquinavir 1000 mg/ritonavir 100 mg twice daily (ritonavir-boosted saquinavir) developed severe hepatocellular toxicity. Therefore, concomitant use of medications that are metabolized by these enzymes may require adjustment when starting or stopping concomitantly administered rifampin.

Rifampin has been reported to substantially decrease the plasma concentrations of the following antiviral drugs: atazanavir, darunavir, fosamprenavir, saquinavir, and tipranavir. These antiviral drugs must not be coadministered with rifampin. (See CONTRAINDICATIONS.)

Rifampin is known to induce certain cytochrome P-450 enzymes. Coadministration of RIFATER, because it contains rifampin, with drugs that undergo biotransformation through these metabolic pathways may accelerate elimination. To maintain optimum therapeutic blood levels, dosages of drugs metabolized by these enzymes may require adjustment when starting or stopping concomitantly administered rifampin.

Rifampin has been reported to substantially decrease the plasma concentrations of the following antiviral drugs: atazanavir, darunavir, fosamprenavir, saquinavir, and tipranavir. These antiviral drugs must not be coadministered with rifampin. (See CONTRAINDICATIONS.)

Rifampin has been reported to accelerate the metabolism of the following drugs: anticonvulsants (e.g., phenytoin), digoxin, antiarrhythmics (e.g., disopyramide, mexiletine, quinidine, tocainide), oral anticoagulants (e.g., warfarin), methotrexate, norethisterone, naproxen, sulfinpyrazone, and warfarin. (See CONTRAINDICATIONS.)

The concomitant use of rifampin with other antibiotics causing vitamin K–dependent coagulopathy, such as cephalosporin (or other cephalosporins with N-methyl-thiethacil side chain), should be avoided as it may lead to severe coagulation disorders, which may result in fatal outcome (especially with high doses).

Enzyme Induction

Rifampin is known to induce certain cytochrome P-450 enzymes. Coadministration of RIFATER, because it contains rifampin, with drugs that undergo biotransformation through these metabolic pathways may accelerate elimination. To maintain optimum therapeutic blood levels, dosages of drugs metabolized by these enzymes may require adjustment when starting or stopping concomitantly administered rifampin.

Rifampin has been reported to substantially decrease the plasma concentrations of the following antiviral drugs: atazanavir, darunavir, fosamprenavir, saquinavir, and tipranavir. These antiviral drugs must not be coadministered with rifampin. (See CONTRAINDICATIONS.)

Rifampin has been reported to accelerate the metabolism of the following drugs: anticonvulsants (e.g., phenytoin), digoxin, antiarrhythmics (e.g., disopyramide, mexiletine, quinidine, tocainide), oral anticoagulants (e.g., warfarin), methotrexate, norethisterone, naproxen, sulfinpyrazone, and warfarin. (See CONTRAINDICATIONS.)

The concomitant use of rifampin with other antibiotics causing vitamin K–dependent coagulopathy, such as cephalosporin (or other cephalosporins with N-methyl-thiethacil side chain), should be avoided as it may lead to severe coagulation disorders, which may result in fatal outcome (especially with high doses).

Enzyme Induction

Rifampin is known to induce certain cytochrome P-450 enzymes. Coadministration of RIFATER, because it contains rifampin, with drugs that undergo biotransformation through these metabolic pathways may accelerate elimination. To maintain optimum therapeutic blood levels, dosages of drugs metabolized by these enzymes may require adjustment when starting or stopping concomitantly administered rifampin.

Rifampin has been reported to substantially decrease the plasma concentrations of the following antiviral drugs: atazanavir, darunavir, fosamprenavir, saquinavir, and tipranavir. These antiviral drugs must not be coadministered with rifampin. (See CONTRAINDICATIONS.)

Rifampin has been reported to accelerate the metabolism of the following drugs: anticonvulsants (e.g., phenytoin), digoxin, antiarrhythmics (e.g., disopyramide, mexiletine, quinidine, tocainide), oral anticoagulants (e.g., warfarin), methotrexate, norethisterone, naproxen, sulfinpyrazone, and warfarin. (See CONTRAINDICATIONS.)

The concomitant use of rifampin with other antibiotics causing vitamin K–dependent coagulopathy, such as cephalosporin (or other cephalosporins with N-methyl-thiethacil side chain), should be avoided as it may lead to severe coagulation disorders, which may result in fatal outcome (especially with high doses).

Enzyme Induction

Rifampin is known to induce certain cytochrome P-450 enzymes. Coadministration of RIFATER, because it contains rifampin, with drugs that undergo biotransformation through these metabolic pathways may accelerate elimination. To maintain optimum therapeutic blood levels, dosages of drugs metabolized by these enzymes may require adjustment when starting or stopping concomitantly administered rifampin.

Rifampin has been reported to substantially decrease the plasma concentrations of the following antiviral drugs: atazanavir, darunavir, fosamprenavir, saquinavir, and tipranavir. These antiviral drugs must not be coadministered with rifampin. (See CONTRAINDICATIONS.)

Rifampin has been reported to accelerate the metabolism of the following drugs: anticonvulsants (e.g., phenytoin), digoxin, antiarrhythmics (e.g., disopyramide, mexiletine, quinidine, tocainide), oral anticoagulants (e.g., warfarin), methotrexate, norethisterone, naproxen, sulfinpyrazone, and warfarin. (See CONTRAINDICATIONS.)

The concomitant use of rifampin with other antibiotics causing vitamin K–dependent coagulopathy, such as cephalosporin (or other cephalosporins with N-methyl-thiethacil side chain), should be avoided as it may lead to severe coagulation disorders, which may result in fatal outcome (especially with high doses).

Enzyme Induction

Rifampin is known to induce certain cytochrome P-450 enzymes. Coadministration of RIFATER, because it contains rifampin, with drugs that undergo biotransformation through these metabolic pathways may accelerate elimination. To maintain optimum therapeutic blood levels, dosages of drugs metabolized by these enzymes may require adjustment when starting or stopping concomitantly administered rifampin.

Rifampin has been reported to substantially decrease the plasma concentrations of the following antiviral drugs: atazanavir, darunavir, fosamprenavir, saquinavir, and tipranavir. These antiviral drugs must not be coadministered with rifampin. (See CONTRAINDICATIONS.)

Rifampin has been reported to accelerate the metabolism of the following drugs: anticonvulsants (e.g., phenytoin), digoxin, antiarrhythmics (e.g., disopyramide, mexiletine, quinidine, tocainide), oral anticoagulants (e.g., warfarin), methotrexate, norethisterone, naproxen, sulfinpyrazone, and warfarin. (See CONTRAINDICATIONS.)

The concomitant use of rifampin with other antibiotics causing vitamin K–dependent coagulopathy, such as cephalosporin (or other cephalosporins with N-methyl-thiethacil side chain), should be avoided as it may lead to severe coagulation disorders, which may result in fatal outcome (especially with high doses).
Isoniazid
Isoniazid has been reported to induce pulmonary tumors in a number of strains of mice.

Pyrazinamide
Pyrazinamide was not carcinogenic in lifetime bioassays in rats (at doses up to 500 mg/kg; about three times the recommended human dose, based on body surface area comparisons) or mice (at doses up to 2000 mg/kg; about five times the recommended human dose, based on body surface area comparisons).

Pyrazinamide was mutagenic in the Ames bacterial test, but induced chromosomal aberrations in human lymphocyte cell cultures.

Pregnancy – Teratogenic Effects
Category C. Although animal reproduction studies have not been conducted with RIFATER, teratogenic effects (including cleft palate and spina bifida) have been observed in rodents treated with rifampin at doses 0.2 to 2 times the maximum recommended human dose, based on body surface area comparisons. There are no adequate and well-controlled studies of RIFATER in pregnant women. Rifampin should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Rifampin
Congenital malformations, primarily spina bifida, were increased in the offspring of pregnant rats given rifampin during organogenesis at oral doses of 150 to 250 mg/kg/day (about 1 to 2 times the maximum recommended human dose based on body surface area comparisons). Cleft palate was increased in a dose-dependent fashion in fetuses of pregnant mice treated at oral doses of 50 to 200 mg/kg (about 0.2 to 0.9 times the maximum recommended human dose based on body surface area comparisons). Imperfect osteogenesis and embryopathy were also reported in pregnant rabbits given rifampin at oral doses up to 200 mg/kg/day (about 3 times the maximum recommended daily human dose based on body surface area comparisons). Although there are no adequate and well-controlled studies in pregnant women, rifampin has been reported to cross the placental barrier and appear in cord blood.

Isoniazid
It has been reported that in both rats and rabbits, isoniazid may exert an embryocidal effect when administered orally during pregnancy, although no isoniazid-related congenital anomalies have been found in reproduction studies in mammalian species (mice, rats, and rabbits).

Pyrazinamide
Animal reproductive studies have not been conducted with pyrazinamide. It is also not known whether pyrazinamide can cause fetal harm when administered to a pregnant woman.

Pregnancy – Non-Teratogenic Effects
When administered during the last few weeks of pregnancy, rifampin can cause postnatal hemorrhages in the mother and infant for which treatment with vitamin K may be indicated. When administered during the last few weeks of pregnancy, rifampin can cause postnatal hemorrhages in the mother and infant. In this case, treatment with vitamin K may be indicated for postnatal hemorrhage.

Rifampin
Since rifampin, isoniazid, and pyrazinamide are known to pass into maternal breast milk, a decision should be made whether to discontinue nursing or to discontinue RIFATER, taking into account the importance of the drug to the mother.

Pediatric Use
Safety and effectiveness in pediatric patients under the age of 15 have not been established. (See CLINICAL PHARMACOLOGY. General; See also DOSAGE AND ADMINISTRATION.)

Geriatric Use
Clinical studies of RIFATER did not include sufficient subjects of age 65 or over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. Caution should therefore be observed in using rifampin and isoniazid in elderly patients. (See WARNINGS.)

ADVERSE REACTIONS

Adverse Experiences during the Clinical Trial
Adverse event data reported for the RIFATER and the separate drug treatment groups during the first 2 months of the trial are shown in the table below.

Adverse Events Reported During the Clinical Study

<table>
<thead>
<tr>
<th>Adverse Events by Body Systems During First 2 Months of Trial</th>
<th>Number of Patients with Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutaneous (rash, erythema, pruritus, generalized hypersensitivity)</td>
<td>RIFATER n=122†</td>
</tr>
<tr>
<td>Gastrointestinal (nausea, vomiting, diarrhea)</td>
<td>8 (7%)</td>
</tr>
<tr>
<td>Musculoskeletal (arthralgia, localized joint pain, edema of the legs)</td>
<td>8 (7%)</td>
</tr>
<tr>
<td>Hearing and Vestibular (tinnitus)</td>
<td>3 (2%)</td>
</tr>
<tr>
<td>Liver and Biliary (jaundice, hepatitis with deep jaundice)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Central and Peripheral Nervous System (instability, dizziness, clumsiness, paresthesias of the legs, anxiety, delirium)</td>
<td>5 (4%)</td>
</tr>
<tr>
<td>Total Body (spiking fever, persistent fever)</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>Cardiorespiratory (tightness in chest, coughing)</td>
<td>8 (7%)</td>
</tr>
</tbody>
</table>

Adverse Events Reported During the Clinical Study (continued)

<table>
<thead>
<tr>
<th>Adverse Events by Body Systems During First 2 Months of Trial</th>
<th>Number of Patients with Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients with one or more adverse events</td>
<td>29</td>
</tr>
</tbody>
</table>

Adverse Reactions Reported for Individual Components

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Number of Patients with Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifampin</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td></td>
</tr>
<tr>
<td>Heartburn, epigastric distress, anorexia, nausea, vomiting, jaundice, flatulence, cramps, and diarrhea</td>
<td></td>
</tr>
<tr>
<td>have been noted in some patients. Although Clostridium difficile has been shown in vitro to be sensitive to rifampin, pseudomembranous colitis has been reported with the use of rifampin and other broad spectrum antibiotics). Therefore, it is important to consider this diagnosis in patients who develop diarrhea in association with antibiotic use. Tooth discoloration (which may be permanent) may occur.</td>
<td></td>
</tr>
<tr>
<td>Hepatic</td>
<td></td>
</tr>
<tr>
<td>Hepatic abnormalities in liver function tests (e.g., elevations in serum bilirubin, alkaline phosphatase, serum transaminases) have been observed. Rarely, hepatitis or a shock-like syndrome with hepatic involvement and abnormal liver function tests has been reported.</td>
<td></td>
</tr>
<tr>
<td>Hematologic</td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia has occurred primarily with high dose intermittent therapy, but has also been noted after resumption of interrupted treatment. It rarely occurs during well-supervised daily therapy. This effect is reversible if the drug is discontinued as soon as purpura occurs. Cerebral hemorrhage and fatalities have been reported when rifampin administration has been continued or resumed after the appearance of purpura.</td>
<td></td>
</tr>
<tr>
<td>Rare reports of disseminated intravascular coagulation have been observed.</td>
<td></td>
</tr>
<tr>
<td>Leukopenia, hemolytic anemia, decreased hemoglobin, bleeding, and vitamin K-dependent coagulation disorders have been observed.</td>
<td></td>
</tr>
<tr>
<td>Rarely, agranulocytosis has been reported.</td>
<td></td>
</tr>
<tr>
<td>Central Nervous System</td>
<td></td>
</tr>
<tr>
<td>Headache, fever, drowsiness, fatigue, ataxia, dizziness, inability to concentrate, mental confusion, behavioral changes, muscular weakness, pains in extremities, and generalized numbness have been observed.</td>
<td></td>
</tr>
<tr>
<td>Psychoses have been rarely reported.</td>
<td></td>
</tr>
<tr>
<td>Rare reports of myopathy have also been observed.</td>
<td></td>
</tr>
<tr>
<td>Ocular</td>
<td></td>
</tr>
<tr>
<td>Visual disturbances have been observed.</td>
<td></td>
</tr>
<tr>
<td>Endocrine</td>
<td></td>
</tr>
<tr>
<td>Rare reports of adrenal insufficiency in patients with compromised adrenal function have been observed.</td>
<td></td>
</tr>
<tr>
<td>Renal</td>
<td></td>
</tr>
<tr>
<td>Elevation in BUN and serum urea acid have been reported. Rarely, hemolysis, hemoglobinuria, hematuria, interstitial nephritis, acute tubular necrosis, renal insufficiency, and acute renal failure have been noted. These are generally considered to be hypersensitivity reactions. They usually occur during intermittent therapy or when treatment is resumed following intermittent or accidental interruption of a daily dosage regimen, and are reversible when rifampin is discontinued and appropriate therapy instituted.</td>
<td></td>
</tr>
<tr>
<td>Dermatologic</td>
<td></td>
</tr>
<tr>
<td>Cutaneous reactions are mild and self-limiting and do not appear to be hypersensitivity reactions. Typically, they consist of flushing and itching with or without a rash. More serious cutaneous reactions which may be due to hypersensitivity occur but are uncommon.</td>
<td></td>
</tr>
<tr>
<td>Hypersensitivity reactions</td>
<td></td>
</tr>
<tr>
<td>Occasionally, pruritus, urticaria, rash, pemphigoid reaction, erythema multiforme including Stevens Johnson syndrome, toxic epidermal necrolysis, Drug Reaction with Eosinophilia and Systemic Symptoms syndrome (see WARNINGS), vasculitis, eosinophilia, sore mouth, sore tongue and conjunctivitis have been observed.</td>
<td></td>
</tr>
<tr>
<td>Anaphylaxis has been reported rarely.</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Edema of the face and extremities has been reported. Other reactions which have occurred with intermittent dosage regimens include “flu” syndrome (such as episodes of fever, chills, headache, dizziness, and bone pain), shortness of breath, wheezing, decrease in blood pressure and shock. The “flu” syndrome may also appear if rifampin is taken irregularly by the patient or if daily administration is resumed after a drug free interval.</td>
<td></td>
</tr>
<tr>
<td>Isoniazid</td>
<td></td>
</tr>
<tr>
<td>The most frequent reactions are those affecting the nervous system and the liver. (See the boxed WARNINGS.)</td>
<td></td>
</tr>
<tr>
<td>Nervous System</td>
<td></td>
</tr>
<tr>
<td>Peripheral neuropathy is the most common toxic effect. It is dose-related, occurs most often in the malnourished and in those predisposed to neuritis (e.g., alcoholics and diabetics), and is usually preceded by paresthesia of the feet and hands. The incidence is higher in “slow inactivators.”</td>
<td></td>
</tr>
</tbody>
</table>
Other neurotoxic effects, which are uncommon with conventional doses, are convulsions, toxic encephalopathy, optic neuritis and atrophy, memory impairment, and toxic psychosis.

Gastrointestinal
Pancreatitis, nausea, vomiting, and epigastric distress.

Hepatic
Elevated serum transaminases (SGOT, SGPT), bilirubinemia, bilirubinuria, jaundice, and occasionally severe and sometimes fatal hepatitis. The common prodromal symptoms are anorexia, nausea, vomiting, fatigue, malaise, and weakness. Mild and transient elevation of serum transaminase levels occurs in 10 to 25% of persons taking isoniazid. The abnormality usually occurs in the first 4 to 6 months of treatment but can occur at any time during therapy. In most instances, enzyme levels return to normal with no necessity to discontinue medication. In occasional instances, progressive liver damage occurs, with accompanying symptoms. In these cases, the drug should be discontinued immediately. The frequency of progressive liver damage increases with age. It is rare in persons under 20, but occurs in up to 2.3% of those over 50 years of age.

Hematologic
Agranulocytosis; hemolytic, sideroblastic, or aplastic anemia; thrombocytopenia; and eosinophilia.

Hypersensitivity reactions
Fever, skin rashes (morbilliform, maculopapular, purpuric, or exfoliative), lymphadenopathy, anaphylactic reactions, Stevens-Johnson syndrome, toxic epidermal necrolysis (see WARNINGS, Isoniazid), Drug Reaction with Eosinophilia and Systemic Symptoms syndrome (see WARNINGS), and vasculitis.

Metabolic and Endocrine
Pyridoxine deficiency, pellagra, hyperglycemia, metabolic acidosis, and gynecomastia.

Miscellaneous
Rheumatic syndrome and systemic lupus erythematosus-like syndrome.

Pyrazinamide
The principal adverse effect is a hepatic reaction (see WARNINGS). Hepatotoxicity appears to be dose related and may appear at any time during therapy. Pyrazinamide can cause hyperuricemia and gout (see PRECAUTIONS).

Gastrointestinal
GI disturbances including nausea, vomiting, and anorexia have also been reported.

Hematologic and Lymphatic
Thrombocytopenia and sideroblastic anemia with erythroid hyperplasia, vacuolation of erythrocytes and increased serum sedimentation rates have occurred rarely with this drug. Adverse effects on blood clotting mechanisms have also been rarely reported.

Other
Mild arthralgia and myalgia have been reported frequently. Hypersensitivity reactions including Drug Reaction with Eosinophilia and Systemic Symptoms syndrome (see WARNINGS), rashes, urticaria, pruritus, and erythema have been reported. Angioedema has been reported rarely. Fever, acne, photosensitivity, porphyria, dysuria, and interstitial nephritis have been reported rarely.

OVERDOSAGE
There is no human experience with RIFATER overdosage.

Acute Toxicity
Rifampin
The minimum acute lethal or toxic dose is not well established. However, nonfatal acute overdoses in adults have been reported with doses ranging from 9 to 12 gm rifampin. Fatal acute overdoses in adults have been reported with doses ranging from 14 to 60 gm. Alcohol or a history of alcohol abuse was involved in some of the fatal and nonfatal reports. Nonfatal overdoses in pediatric patients ages 1 to 4 years old of 100 mg/kg for one to two doses have been reported.

Isoniazid
Unintended or inadequately treated cases of gross isoniazid overdosage can be fatal, but good response has been reported in most patients treated within the first few hours after drug ingestion. Ingested acute, as little as 1 /g isoniazid may cause toxicity in adults. Doses of 35 to 40 mg/kg have resulted in seizures. Ingestion of 80 to 150 mg/kg isoniazid has been associated with severe toxicity and, if untreated, significant mortality.

Pyrazinamide
Overdosage experience with pyrazinamide is limited.

Signs and Symptoms
The following signs and symptoms have been seen with each individual component in an overdosage situation.

Rifampin
Nausea, vomiting, abdominal pain, pruritus, headache, and increasing lethargy will probably occur within a short time after rifampin overdose; unconsciousness may occur when there is severe hepatic disease. Transient increases in liver enzymes and/or bilirubin may occur. Brownish-red or orange discoloration of the skin, urine, sweat, saliva, and feces will occur, and its intensity is proportional to the amount ingested. Liver enlargement, possibly with tenderness, can develop within a few hours after severe overdosage; bilirubin levels may increase and jaundice may develop rapidly. Hepatic involvement may be more marked in patients with prior impairment of hepatic function. Other physical findings remain essentially normal. A direct effect upon the hematopoietic system, electrolyte levels, or acid-base balance is unlikely.

Facial or periorbital edema has also been reported in pediatric patients. Hypertension, sinus tachycardia, ventricular arrhythmias, seizures and cardiac arrest were reported in some fatal cases.

Isoniazid
Isoniazid overdosage produces signs and symptoms within 30 minutes to 3 hours. Nausea, vomiting, dizziness, slurring of speech, blurring of vision, and visual hallucinations (including bright colors and strange designs) are among the early manifestations. With marked overdosage, respiratory distress and CNS depression, progressing rapidly from stupor to profound coma, are to be expected along with severe, intractable seizures. Severe metabolic acidosis, acetonuria, and hyperglycemia are typical laboratory findings.

Pyrazinamide
In one case of pyrazinamide overdosage, abnormal liver function tests developed. These spontaneously reverted to normal when the drug was stopped.

Treatment
The airway should be secured and adequate respiratory exchange should be established in cases of overdosage with RIFATER. Only then should gastric emptying (lavage-aspiration) be attempted; this may be difficult because of seizures.

Obtain blood samples for immediate determination of gases, electrolytes, BUN, glucose, etc.; type and cross-match blood in preparation for possible hemodialysis.

Gastric lavage within the first 2 to 3 hours after ingestion is advised, but it should not be attempted until convulsions are under control. To treat convulsions, administer IV diazepam or short-acting barbiturates, and IV pyridoxine (usually 1 mg/kg isoniazid ingested). Following evacuation of gastric contents, the instillation of activated charcoal slurry into the stomach may help absorb any remaining drug from the gastrointestinal tract. Antiemetic medication may be required to control severe nausea and vomiting.

Rapid Control of Metabolic Acidosis Is Fundamental to Management. Give IV sodium bicarbonate at once and repeat as needed, adjusting subsequent dosage on the basis of the laboratory findings (e.g., serum sodium, pH, etc.). Forced osmotic diuresis must be started early and should be continued for some hours after clinical improvement to hasten renal clearance of drug and help prevent relapse; monitor fluid intake and output.

Bile drainage may be indicated in case of serious impairment of hepatic function lasting more than 24–48 hours. Under these circumstances and for severe cases, extracorporeal hemodialysis may be required; if this is not available, peritoneal dialysis can be used along with forced diuresis.

Along with measures based on initial and repeated determination of blood gases and other laboratory tests as needed, utilize meticulous respiratory and other intensive care to protect against hypoxia, hypotension, aspiration pneumonitis, etc.

Untreated or inadequately treated cases of gross isoniazid overdosage can terminate fatally, but good response has been reported in most patients brought under adequate treatment within the first few hours after drug ingestion.

DOSAGE AND ADMINISTRATION
RIFATER is recommended in the initial phase of short-course therapy which is usually continued for 2 months. The Advisory Council for the Elimination of Tuberculosis, the American Thoracic Society, and the Centers for Disease Control and Prevention recommend that either streptomycin or ethambutol be added as a fourth drug in a regimen containing isoniazid (INH), rifampin, and pyrazinamide for initial treatment of tuberculosis unless the likelihood of INH or rifampin resistance is very low. The need for a fourth drug should be reassessed when the results of susceptibility testing are known. If community rates of INH resistance are currently less than 4%, an initial treatment regimen with less than four drugs may be considered.

Following the initial phase, treatment should be continued with rifampin and isoniazid (e.g., RIFAME®) for at least 4 months. Treatment should be continued for longer if the patient is still sputum or culture positive, if resistant organisms are present, or if the patient is HIV positive. Concomitant administration of pyridoxine (B6) is recommended in the malnourished, in those predisposed to neuropathy (e.g., alcoholics and diabetics), and in adolescents.

See CLINICAL PHARMACOLOGY, General, for dosing information in patients with renal failure.

Adults
Patients should be given the following daily dose of RIFATER either 1 hour before or 2 hours after a meal with a full glass of water.

Patients weighing ≤44 kg – 4 tablets
Patients weighing between 45-54 kg – 5 tablets
Patients weighing ≥55 kg – 6 tablets

Pediatric Patients
The ratio of the drugs in RIFATER may not be appropriate in pediatric patients under the age of 15 (e.g., higher mg/kg doses of isoniazid are usually given in pediatric patients than adults).

How Supplied
RIFATER tablets are light beige, smooth, round, and shiny sugar-coated tablets imprinted with “RIFATER®” in black ink and contain 120 mg rifampin, 50 mg isoniazid, and 300 mg pyrazinamide, and are supplied as:

Bottles of 60 tablets (NDC 0088-0576-41).

Storage
Store at 25°C (77°F); excursions permitted to 15–30°C (59–86°F) [see USP Controlled Room Temperature]. Protect from excessive humidity.

References

sanofi-aventis U.S. LLC
Bridgewater, NJ 08807
A SANOFI COMPANY

Revised August 2018
©2018 sanofi-aventis U.S. LLC
RIFIP-FSPL-SL-AUG18